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ABSTRACT

A family of simple, periodic basis functions with "built-in" discontinuities are introduced,

and their properties are analyzed and discussed. Some of their potential usefulness is illus-

trated in conjunction with the Fourier series representation of functions with discontinuities.

In particular, it is demonstrated how they can be used to construct a sequence of approxima-

tions which converges exponentially in the maximum norm to a piece-wise smooth function.

The theory is illustrated with several examples and the results are discussed in the context

of other sequences of functions which can be used to approximate discontinuous functions.
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1. Introduction. Fourier series are used widely in many branchesof applied
mathematics. For example, they are often usedtogether with separationof variables
to construct analytical solutions to boundary valueproblemsfor differential equations,
and with a variety of spectral methods to find approximate solutions to theseprob-
lemsnumerically. For practical purposes,approximatesolutions to theseproblemsare
often obtained using only a finite number of the terms in a Fourier series.This trun-
cation proceduremay lead to nonuniformly valid approximations. In particular, when
the function beingapproximated hasa point of discontinuity, the Gibbsphenomenais
present. It is well known (see,e.g., [1] or [12]) that the magnitude of the "overshoot"
associatedwith the Gibbs phenomenais not eliminated by increasing the number of

terms in the approximation, but rather the overshoot approaches an asymptotic limit

of about 18% as the nurnber of terms approaches infinity. In addition, for any Fourier

series partial sum, the "oscillations" caused by this phenomena typically propagate into

regions away from the singularity, and, hence, degrade the quality of the partial sum

approximation in these regions.

In a series of papers, Gottlieb and several of his co-investigators [3],[4],[5],[6],[7]

have proposed a way of overcoming the Gibbs phenomena. Their technique involves

the construction of a new series using the Gegenbauer polynomials. For a function

f that is analytic on the interval [-1, 1], but is not periodic, they prove that their

technique leads to a series which converges exponentially to f in the maximum norm.

To do this, they require that the parameter ),, which appears in the weight factor

(1 - x2) _-1/2, grows with the number of Fourier modes considered. Recently, Geer

[2] introduced and studied a class of approximations {FN, M} to a periodic function

f which uses the ideas of Pad@, or rational function, approximations based on the

Fourier series representation of f, rather than on the Taylor series representation of f.

Each approximation FN, M is the quotient of a trigonometric polynomial of degree N

and a trigonometric polynomial of degree M. The coefficients in these polynomials are

determined by requiring that an appropriate number of the Fourier coefficients of FN, M

agree with those of f. Explicit expressions were derived for these coefficients in terms of

the Fourier coefficients of f and it was proven that these "Fourier-Pad@" approximations

converge point-wise to (f(z +) + f(x-))/2 more rapidly (in some cases by a factor of

1/k TM) than the Fourier series partial sums on which they were based. Although these

approximations do not "eliminate" the Gibbs phenomena, they do mitigate its effect.

In particular, the asymptotic value of the magnitude of the overshoot is reduced to

about 6%, and, outside a "small" neighborhood of a point of discontinuity of f, the

"unwanted" oscillations can (for practical purposes) essentially be eliminated.

To fix notation, we let f be a 27r-periodic function with enough smoothness and

regularity properties so that its Fourier series exists and converges to (f(x +) + f(x-))/2

for all -_r < x < _'. Let cM[--_, 7r] denote the class of 27r-periodic functions that have

at least M continuous derivatives on [-Tr, 7r]. Then it is well known (see, e.g., [1]) that,

if f E CM[--_r, Tr], then the Fourier coefficients {aj,bj} of f are O(1/j M+2) as j _ _.

h.loreover, if f is 2_r-periodic and analytic on [-_r, _r], then there exists a constant 0,

with 0 < 0 < 1, such that aj and bj are O(0J), as j ---* oz. In this case, it follows that



the Fourier seriesof f converges exponentially to f in the maximum norm.

In this paper, we introduce a new, simple class of periodic "basis" functions which

have certain "built-in" singularities, and which can be used to construct a sequence of

approximations which converges exponentially to f in the maximum norm. In particular,

this implies that the Gibbs phenomena can be completely eliminated, even when f has

several points of discontinuity in the interval [-Tr, _r]. In section 2, the first two of

these basis functions are introduced and it is shown how they can be used to improve

the convergence properties of a function with one or more singularities in the interval

[-_r, rr]. These ideas are illustrated by two simple examples in section 3. In section 4,

the complete class of basis functions are introduced, and various convergence properties

of approximations constructed using them are studied in section 5. In particular, it

is proven that, under only mild restrictions on the original-function f, they can be

used to construct a sequence of approximations that converge exponentially to f in

the maximum norm. The results of the theorems of section 5 are illustrated by three

more examples in section 6. We discuss our results in the final section and compare our

approximations with those used by other investigators.

2. Basis functions So and $1. Consider the 2_r-periodic functions

1 sin(x) 1

(1) So(x) -- 2v_ _/1-cos(x) and S,(x) -- ½_/1 -cos(x),

which are illustrated in Figure 1. Using the Taylor series expansions of sin(x) and cos(x)

about x = 0, it is straightforward to show that

(2) So(x)= _1 + O(x_) , S,(x) = lxl + o(xb , as x -_ 0.

From these relations it follows that So and S, satisfy the following jump conditions at

X _0"

(3) [So(O)] = 1; (0) =0, [SI(O)] =0, [-_--x (0) = 1.

Here we have used the notation [g(x)] - g(x +) - g(x-). (In the second and fourth

equations in (3), the derivatives of Sj are understood to be derivatives "from the right"

and "from the left", respectively.) We also note that both So and $1 have continuous

derivatives of all orders for -7r < x < 0 and 0 < x < _r.

Consider now the problem of approximating the piece-wise continuous (smooth)

2rr-periodic function f(x), which can be represented at points of continuity of f by its

Fourier series, i.e.,

N
a0

f(x) ----- lira F(N)(x), F(N)(x) =-- -f + _ aycos(jx) + bysin(jx),
N---*oc j=l

(4) aj = 1 f(x) sin(ix) dx, j = 0, l, ....bj
2



We shall assume that f(x) and/or f'(x) may have discontinuities at a finite number

of points, say at x = xj, j = 1,2, ...,n, in the interval (-_,_], and that the one-sided

limits of f and f' exist and are finite at each of these points.

To construct a more rapidly converging Fourier series type representation of f, we

first define the function

(5)
n

Rl(x) = _ {Ao,jSo(X - xj) + AI,jSI(x- xj)},
j=I

where the constants {A0,j} and {AI,j} are determined so that the "jlHnps" in /_l(X)

and its derivative coincide with the corresponding jumps in f(x). Using the relations

(3), this requirement leads to the expressions

(6) Ao,j=[f(xj)], Al_=[f'(xj)], j=l,2,...n.

Then we write

(7) f(x) = Rl(x) + fa(x), where fl(x) - f(x) - Rl(X).

By the way it has been defined, the function fl(x) is CI[-_,1r] (at least) and, hence,

its Fourier series will converge at a faster rate than the Fourier series of f. To construct

its Fourier series, we first note that So and $1 can be expanded in a Fourier series as

1 sin(x) - _bo,j sin(jx), bo,j - 4 j
(8) So(X) - 2v_ _/1 - cos(x) j:l r 4j 2 - 1'

and

(9)
--_--1_/1 - cos(x) al'° j__l cos(jx)SI(X) _ _ ---- _-_- _ al,j al,j -- 7r(1 - 4j2) "

f (1) ,(1)_
Then, denoting the Fourier coefficients of fl by _taj ,oj ._, we find, using equations

(4)-(9),

7l

@1)= aj- _ {Al,_al,j cos(jxs)- Ao,_bo,j sin(jxs)},

n

(10) b_l)= bj- _ {Al,_al,j sin(jx_)+ Ao,_bo,jCos(jx_)},
s----1

j = 1,2, ....

As we shall demonstrate explicitly in the next sections, the coefficients {@1), bC1)}3decay

faster (by at ]east a factor of 1/j 2) as j _ oo than the original Fourier coefficients

{aj, bj}. Using these definitions, we define the new approximations

(11) a_l) N a_1) 0) sin(jx) N > 0.
fO'Y)(x) -- RI(X) + --_ + _ cos(jx) + bj , _

j=l

3



These functions are .the first in a sequence of "better" approximations to f, which we

shall illustrate, generalize, and then analyze and discuss in the following sections. (We

note that the general idea of "subtracting" from the Fourier series of f the Fourier series

of another "simple" function with an appropriate singularity has been considered by

other investigators, for example, by Tolstoy [13], pp. 144-147. However, this idea does

not seem to have been pursued in any systematic or exhaustive manner.)

3. Examples. Before we generalize the family of approximations {f(1,N)} and

discuss some of their convergence properties, we illustrate these approximations by two

examples.

Example 1: We consider first the function f(x) defined by f(x) = x + zr, for

-_- <_ x <_ 0, f(x) =x-_r, for 0 < x <_ _r, and f(x+27r) = f(x), for all x. Then

x = 0 is the only point of discontinuity of f(x) in the interval -Tr < x < zr. Thus, we

set n -- 1 with xl = 0 in equation (5) above and use the facts that [f(0)] -- -2zr and

[if(0)] = 0 in equations (6) to define

(12) Rl(x) --- A0,1_q0(x) + AI,_SI(x) =
sin(z)

cos(x)'

Thus, R1 (x) has the same jump at x = 0 as the function f(x), which is clearly evident

in Figure 2, where we have plotted both f(x) and Rl(x). Hence, we now consider the

function fl(x) = f(x)- Rl(x), which is Cl[-zr, zr], and is also shown in Figure 2. Using

equations (10), we expand f_(x) in a Fourier series as

¢X3

(13) fl(x)=_b_l)sin(jx) ' b_l) - 2
j=l j(4j 2- 1)"

W'e note that the coefficients {b_t) ) are O(1/j 3) as j _ ee, while the Fourier coefficients

by = -2/j of f are only O(1/j) as j --+ oc. Then, using equation (13) in equation (11),

we define the approximations

N

(14) f(l'N)(x) = Rl(x) + _ b_1) sin(jx).
j----]

In Figure 3 we have plotted both f(x) and f(1,3)(x), where the good agreement is

evident.

Example 2: As a somewhat more complicated example, we consider the function

f defined by

-(x + < z _<
(15) f(x) = 2x, -re�3 < x <_ O,

1, 0 < x <_ 7r/2,

(z- 2+ 1/2, < x _<

and f(x + 27r) = f(x) for all x. This function is illustrated in Figure 4, along with the

Fourier series partial sums F(g)(x) of f(x), defined by equations (4), for N = 10, and

the error (difference) f(x) - F(l°)(z).
4



The function f has discontinuities at the n = 4 points xl = -rr/3, x2 = 0, x3 = _r/2,

and x4 = _r. Using the definition (15) and the relations (6), we find that the coefficients

{A0,j} and {AI,j} in the definition (5) of Rl(X) are given in Table I.

Table I: Coefficients Ak,j for Example 1.

j Ao,j AI,j

1 -27r/3 3

2 1 -2

3 -1/2 0

4 (87r-6-37r2)/12 -(l+_r)

The functions f(x), )tl (x), as well as the difference fl (x) - f (x) -R 1(X), are shown

in Figure 5. Obviously, fl(x) is much smoother than f(x), and in fact, the three-term

Fourier series partial sum of fl (x) is virtually "identical" to fl (x), to within plotting

accuracy. Thus, the approximation f(1,3)(x), which is shown in Figure 6 along with f(x),

is a much better approximation to f(x) than the original Fourier series representation

of f, even when many more terms are included in F(g)(x) (cp. Figure 4).

4. Generalizations. The basis functions introduced in the section 2 can be gen-

eralized and extended to allow us to construct functions which have appropriate dis-

continuities at, say, the n th derivative. To this end, we define the functions S,_(x) by

2k-3/2

S2k(x) ---- (2k)I sin(x)(1 - cos(x)) k-1/2 ,

2k-t/2

(16) S2k+I(X) _ (2k+l)I(1-cos(x))k+_/2 k=O, 1 2,) ' ....

Then it is straightforward to show that S,_(x) is Cn-_[-_r, 7r], while the jump in its n} h

derivative at x = 0 is 1. lvlore generally, each S,_ has continuous derivatives of all orders

for -7r < x < 0 and 0 < x < lr, and, at x = 0, satisfies the jump conditions

[S(q)(0)] -= _xx S,_(x) = O, if q < n; )(0) = 1;
x----0

[S_-v+l)(O)] : [S_2V)(O)] : (-1/4) v, p _> O;

[ (2v) )] [¢(2v+,)mj$2k+1(0 = [_2k wJj =0, p>k> 1,

'J2k+l

(17) -- k---_fc -- -1) j:_k . l 2 j -- --

5



In particular, specificvaluesfor the jurnps of [S(_P)(0)]aresummarizedin Table II for
k 3

a few small values of k and p.

(2p+l)
Table II: The jumps [$2k+i (0)] = [S_P/(0)]

p=0 1 2

k = 0 1 -1/4 1/16

1 0 1 -5/2 91/16

2 0 0 1 -35/4

3 0 0 0 1

4 0 0 0 0

5 0 O. 0 0

6 0 0 0 0

3 4 5 6

- 1/64 1/256 -1/1024 1/4096

-205/16

483/8

-21

0

0

7381/256

-12485/32

2541/8

-i65/4

1

0

-33215/5.12

631631/256

-68497/16

18447/16

-143/2

Using the definitions (16), we find that the Fourier series of S. can be expressed as

(X) O_

a2k+l,0

(18) S2k+l(x) = 2 " + Ea2k+l,jc°s(Jz), S2k(x) = _-_b2k,jsin(jx),
j=l j=l

a2k+l,j = (-1) k+14k+l
7r k

YI (4j 2 - (2i + 1) 2)
i=0

(19) b2kd =--ja2k+ld, j =O, 1,2,... ,

for k = 0, 1,2, .... (For convenience in certain formulas which follow, we also define

a2k,j = b2k+l,j = O, for k >_ 0.)

Now let the 2_r-periodic function f have possible discontinuities in f(k) for 0 < k <

M at x = xj, j = 1, 2,...,n, where -Tr < xj _< _r. (Here we assume that all of the

one-sided limits f(k)(x+) and f(k)(x;) exist and are finite.) We define the function

hi n

(20) RM(X) =-- E E Ak,_Sk(x - zj),
k=0j=l

,,'here the constants {Ak,j} are determined so that fM(x) -_ f(x)-- RM(X) is cM[--% 7r].

Using the relations (17), we find that these constants can be determined recursively from

the relations

k-1

(21) Ak,j=[f(k)(Xj)]--EA,,j[S_k)(O)], j = l, 2, ...n, k=0,1,...,M.
i=0

Thus, the function fM(X) will be cM[--% 7r], at least, and hence its Fourier series will

converge at a faster rate than the Fourier series of f.

6



by
OnceRM(X) has been defined, we define the family of approximations f(M,N) to f

a_M) N b_M) sin(jx),f<M'N)(x)-- RM(x)+ -5-- + F_,a_") cos(jx)+
j=l

M n

a_M) = aj- _ _ Ak,s {akj Cos(jxs)- bk,3 sin(jxs)},
k=O s=l

M

(22) b_M)=bj-- _EA<s{ak,jsin(jx_)+bk,jcos(jx_)}, j=0,1,2, ....
k=O s=l

These approximations have several nice convergence properties, which we shall discuss

in the next section.

Returning to Example 1, since the function fl(x) (see equation (7)) is C1[-77, 7r]

and satisfies the jump conditions [f_'(0)] = -7r/2 and [fl"(0)] = 0, we use the definition

of RM(X) in equation (20) with M = 3 to define

na(_) - -2_So(x) - _&(x)

7r sin(x) _r sin(x)_/1- cos(x).
(2a) = _v/l_cos(x) 4v_

Then f3(x) - f(x)- Ra(X) is C3[-_r, lr], and the Fourier series coefficients in the

definition (22) of f(a'Y)(x) are given by

(24) aSa)= 0, j > 0; b5a)= 18- j(4j 2 - 1)(4j 2 - 9)' j >- 1.

We note that b5a) = O(1/j 5) as j --+ co, while the original Fourier coefficients of f are

only O(1/j) as j ---+¢c.

5. Convergence properties. We now investigate some of the convergence prop-

erties of the function { f(M,Y)} defined in the previous section, as M, N ---+c_. For this

purpose, we first define the errors

E(M'N)(x) _-- f(x)- f(M'N)(x)

o_

(25) = E a_M) c°S(jx) + b_M) sin(jx), M>_0, N>0,
j=N+I

where the coefficients "taj_(M), b5M)} are defined in equations (22). Since the flmction

(M) and b5M) are O(j-(M+2)),fM(X) = f(X)-- RM(X) is cM[--rq rr], it follows that both a s
7



as j --_ oc (see, e.g., [1]). Thus, there exists a constant K = K(M,N), independent of

j, such that

K K

(26) ]a_M)[<- jM+----_' ]b_M)[ <- j'M+2' for all j >_ N + 1.

Using the bounds (26), we find from equation (25) that

1 2K 1

(27) E(M'N)(x) <_ 2K _ jM+--------2<j=N+l M + 1 N M+l '

which follows easily from the integral comparison test.

Suppose now that K satisfies a bound of the form

(28) K <_ k OMM v M!, as M, N _ co,

where/72 and 0 are constants independent of M and N. Then, if we let N be propor-

tional to M, say, N = AM, where ,_ > 0/e, it follows that the errors E (M'N) (x) decay

exponentially to zero as M --* oc. To see this, we substitute (28) into (27) and use

Stirhng's approximation to the factorial to write

2K 1 - MPO M _ (M/e) M

E(M'N)(x) < M + 1 N M+I <- 2K M + 1 ()_M) M+I

(29) <_ p-3/ ,

where/( is another constant, independent of M and N, and (0/he) < 1. Thus, we have

proved the following theorem.

THEOREM 1. Let f(x) be a piece-wise smooth, 27r-periodic function with possible

discontinuities in f and/or some of its derivatives at a finite number of points in the

interval -r < x < It. Suppose that the Fourier coefficients {a_ M), (M)bj } defined by

equations (21)-(22) satisfy the inequalities (26), where K satisfies the bound (28). Then

the approximations {f(M, XM)} defined by equations (20)-(22) converge exponentially to

f(x) in the Lo_-norm as M _ oo, if )_ is chosen so that )t > O/e, i.e.

max If(x) -- f(M'XM)(x)' <_ [4M p-3/2 (oI M,
-_r<_x<_r

where [( is a constant independent of M.

To illustrate this theorem, the coefficients {53("M) } for Example 1 for M = 2m + 1

are easily shown to be given by

(30) (2rn+l) __ 2(_l)m (1.3.5--. (2m + 1)) 2
by - -.--_ - --3 T_ _ii 1)2)' re=O,1,2, ....3 I-L=o(43 +



Noting that 1 • 3.5. • • (2m+ 1) = (2m + 1)!/(2ram!), weuseStirling's approximation
to the factorial in equation (30) to write

(31) _M _.

2 M l-Ii_=0(1 - ((2i + 1)/2j)2) '

where/7/is a constant independent of j and M. In the Appendix we show that there is

another positive constant,/(, such that

(32) _M_<K00 M, 00:00(A)--1/(2V/1-1/(4A2)),

for all A > _, where _ is any arbitrary number greater than 1/2, and for all j >_

h(2m+1) satisfies the bound (26), where K has theN + 1 = AM + 1. Thus we see that _j

form of the right side of-equation (28) with p = 1/2 and 0 = 00(A). (See the Appendix,

also, for a derivation a sharper bound for 0.) Then the condition that A > 0o/e leads

to the requirement that A > A0 --- vff + e2/2e - 0.533. In Figure 7 we have plotted

the normalized errors M(Ae/Oo)ME (M'N) (x) as a function of x, with A = 1 (and hence

N = M) for M = 5, 9, and 13. We note that the error, when regarded as a function of x,

is much more uniformly distributed over the interval [-_r, 7r] than is the corresponding

error for the original Fourier series, which is highly concentrated around x = 0. In

Figure 8 we have plotted the normalized L_c-errors M(Ae/Oo) M max IE(M'N)(x)I, with

N = AM as a function of 1/M for several choices of A > A0. The figure clearly illustrates

that these quantities are bounded as 1/M _ 0 and, hence, that the errors E(M'N)(x)

decay uniformly and exponentially to zero as _hi increases.

To investigate the convergence properties of the approximations {f(M,Y)} for a

general function f, we first consider the following lemma.

LEMMA 1: Let f(x) be a 2_r-periodic function, n a positive integer, and the points

xo = -Tr < xl < ... <__xn = rc be defined such that f(x) = pk(x) for Xk_ 1 < :T.< Xk, k :

1,2, ..., n, where pk is a polynomial of degree at most m. Then the Fourier coefficients

of f defined by equations (4) can be expressed as

1_-_{ ([_1 (-1)k+1 )a,=- sin(jxs) j2k+l [f(2k)(xs)]
7r s=l \ k=O

)}+COS(jXs) m_ j2k+2 [ f(2k-t-1)(xs)] '

\ k=O

bj = - _ cos(jxs) j2k+l
71 s=l \k=O

+ 1, )}\ k=o j2k+2 [ f(2k+l)(xs)] '

9



where, in the upper limits of the inner summations, we have let [q] denote the greatest

integer not exceeding q.

The proof of this lemma follows easily by using the formulas (4) and integrating

each of these expressions by parts m times (see, e.g., [10], pp. 489-493, for more details).

Inserting these expressions into equations (4) and rearranging the resulting series,

we can express the Fourier series of f as

rn

a0 _ If(k)= ,
s=l k=0

(33) h2k(x)- (-1)_ _ sin(jx) (-1) _+1__-1_ ' h2_+l(x)- _ cos(ix)7t" j=l _ '

for k = 0, 1, .... Hence, to establish the exponential convergence of our approximations

for a '])iece-wise polynomial" function f, as defined in LEMMA 1, it is sufficient to

establish that our approximations converge exponentially to each of the functions hk(x)

defined in equations (33). In fact, we shall show that

(34)

and hence

h,(_)- h("_')(x)l< K0I_l'(00_"
--i - M i! \_/ ' i=0,1,...,

(35) hi(x) h(M')_M) } ._0 7_i Mm_,, -._, (x) < (Oo_ _=o,_,...
-_<.<_ - M i! \_7 ' '

where Ko is a constant, independent of M, 00 ----1/(2V/1 - 1/(4A2)), with ,k -- N/M,
and

M N

(36) I'(M'N)'_2p (x) -- E A_2P)Sk(x) + Eb_ 2p'M) sin(jx),
k=2p j=I
k even

M a(2P+_'M)o N
(37) h_-$N)(x) -- E A_ 2p+l)Sk(x) + 2 + _aj

(2p+I,M)

k=2p+l j=l
k odd

eos(j_),

for p = 0,1, .... Here the constants A_ 2p) and A_ 2_-1), as well as the coefficients {b_2p'M)}

and {a_V+l'M)}, are determined as described in section 4.

To show that equations (34)-(37) hold, we shall use induction. The function h0 =

(-1/2_r)f(x), where f(x) is the function of Example I. Hence, using equation (33)with

k = 0 and equation (36) _dth p = 0, we can write

(38) ho(x) - h_M'Y)(x) = --2---_ y_" b_M) sin(ix),
j=N+I

10



where b_M), with M = 2m + 1, is given by the right side of equation (30). Using the

bounds (26) and (28), with 0 = 00, p = 1/2, and N = AM, as well as the remarks below

equation (30) and Stirling's approximation to the factorial, we can write

h0(x)- d0"N)(x) < _ _] ,

where K0 is another constant, independent of M. Hence, equation (34) holds with i = 0

and the exponential convergence of our approximations to ho is established.

Suppose now that equations (35)-(37) hold for i = 0, 1, ..., q - 1. To investigate the

behavior of h(M'g).oq , we observe first that

(39) h<l(x ) = hi(x) and S;/+I(X ) = S2i(X),

for all nonnegative integers i. (Here the primes denote differentiation with respect to

x.) Then, using the first relation in (39), with i = q - 1, we can write

/0_ f0_hq(x) = hq(O) + h'q(t)dt = hq(O) + hq__(t)dt

(40)

where

=h_..N)(x)+ E_'.N)(x).

fx y_(M,N ) (t)dt,h_',_)(_)-- hq(o)+ Jo '°_-'

(41) E(qM'N)(x) ----fo _ {hv_l(t)- h_MiN)(t)}dt.

Using our induction hypothesis and equation (34) with i = q- 1, we find from equations

(40) and (41) that

_ = _ fM
hq(x) h_M'_M)(x) E_M'_M)(x) < JO hq_l(t) - h_MiXM)(t) dt

-.,o _(q: i)! dt <_ M q!

and hence

(42) max
--_r<'x<rr

(M,,kM) I_0 7rq ( 00 "_ M

h_(_)- hq (x) < M q! \_] "

Thus, it just remains to be shown that h_M'N)(x), defined in equations (41), has the

form indicated in equations (36) and (37). To see that this is the case, if q is odd, we
11



useequation (41),equation (36)with 2p -- q - 1, and the last relation in equation (39)

to write

.qh(M'Y)(x) = /_q(O) +/0 _ A_q-1)Sk(t) + E h_q-l'M)-3 sin(jt) dt
k=q--1 j----1
k even

N M N

hq(O) + _-':_(l/j)b_ q-i'M) + _ (q-l) _ 1/j,_b(q 1,M)= A k Sk+l(x) + z..,(- , , j- cos(jx),
j=l k=q-I j=l

k even

which has the form of equation (37) with 2p + 1 --- q, where

a(oq'M) = 2 hq(O) + _(1/j)b_ q-i'M) ,
j----1

(43) A(kq) A(q-1) _(q,U) = (_l/j)b_q-l,M)k--1 ' U.j

If q is even, we use equation (41), equation (37) with 2/) + 1 = q - 1, and the fact

that hq(0) = 0, to write

k=q-1
k k odd

N }a(o q-l'M) E a_.q_l,M)
A_q-1)Sk(t) + 2 + cos(jt) dt

j=l

(44)

N

= _tq(x) + _"_(1/j)a_ q-i'M) sin(jx),
j=l

(45) M A_ q-l) _ooZ a(oq-l,M)xhq(x) =- _ Sk(t)dt +
k=q-1 2
k odd

We now make some observations concerning the function hq. First, we note that hq is

an odd function of x, with _tq(_-) = hq(-r) = 0. The fact that hq is odd follows directly

from equation (45) and the fact that each Sk is an even function of x whenever the

index k is odd. To see that hq vanishes at x = r, we note first that, by letting N _ oo

in equation (37) with 2p + 1 = q - 1, we can write

M a (q-i'M) _ (q-l,M)Cos(jx).
hq_l(x) =-- _ A(kq-1)Sk(x) + 2 + _ aj

k=q-1 j=]
k odd

12



Integrating this expressionfrom x = 0 to x = rr and using the definition of ha-1

(equation (33)), we find

(46) 7ca_q-l,M) U A_ q-l) L_
k----q- 1
k odd

Setting x = _- in equation (45) and then using equation (46), we find that hq-1 (Tr) = 0.

Using this first observation, we note next that hq-1 has q - 1 continuous derivatives for

-Tr < x < r, and that the only discontinuities in higher (even) order derivatives occur

at x = 0. Thus, using the ideas of section 4, we can write

M oG

(47) Ttq--I(X) = _ AkSk(x) + _-_b_ M) sin(jx),
k=q j=l

k even

where the constants fi-k are determined recursively by

j--1 j-2

&: E At '_[s_,-'_(o)]-E _ [s_,_(o)],
k=q--1 k=q
k odd k even

q<j<M, jeven,

and the coefficients b_M) are determined by the right side of the last equation in (22),

with xs : 0, Ak,s : Ak, and

__

3 k=q-1
\ k odd

A(q-_) a(q-l,M)k ak,o +

M

+ E A_ q-1)a_'j"
k=q-i 3
k odd

Thus, when the right side of equation (47), with the upper limit of the second summation

replaced by N, is substituted for ftq_l(x) in equation (44), we see that h_ M'N) has exactly

the form of the right side of equation (36) with 2p = q.

We now summarize these results in the following theorem.

THEOREM 2. Let f be a 27r-periodic, "piece-wise polynomial" function, as defined

in LEMMA 1. Then the sequence of approximations f(M,_M) defined in section _ converge

exponentially to f, with

max f(x)- f(M'XM)(x) <_ --_ -_ ,--Tr<x<'n

where

n m
ao

s('"<)(_)=_-+E E [s(")(_)]hV'N_(x- x,)
s:l k:0

and _2 is a constant (which depends on the particular function f, but is independent of

M) such that

m 7rk

s=l k=0

13



where Ko is the constant which appears in the bounds (35).

Finally, we consider the case when f(x) is a 2rr-periodic, piece-wise analytic func-

tion. We let the n points x0 = -vr < xl < ... _< x_ -= rc be defined such that

f(x) = f_(x) for zi-1 <.x < xi, i = 1,2, ...,n, where each f_(x) is analytic on the closed

interval x__l < x < xi, and such that there exists a point ai, with x_-i <_ ai < xi, such

that (& - x_-l) < p_, where pi is the distance between c_i and the nearest singularity of

fi in the real or complex plane. Then, by Taylor's theorem, we can write

I (x) = P,,m(z)+

m._
(48) Pi,m(x) - _£,=o-7,

We now assume (see, e.g., [9]) that

j!

(49) f/(J)(ai) < C_, 1 < i < n,

where Ci is a constant, independent of j and A- Using equations (48) and (49), we can
write

(50) max If_(x) - r_,m(x)l = max IR_,,n(x)I < C_ x_ -2_.xi__
=i-1_<=_<zi zi-1_<z_<z_ -- Pi '

where C_ = Cipi/(pi - xi + ai) and (xi - xi-1)/A < 1, from our definition of the points

{xi}. We now define

(51) C'= max 6, r]= max < 1,
l<i<n l<_i_n Pi ]

so that from equations (50) and (51) we can write

(52) max }fi(x)- Pi,m(x)l <_ Orl m+l.
Zi--l ___2;<C_i

We now define g(x) as the 27r-periodic, piece-wise polynomial function with g(x) =

P_,m (x) for xi-1 < x <_ xi, i = 1,2, ..., n, and also define the approximation

72 m
a0

= +E E •- x.)
s=l k=0

/.(M,N)where 'ok (x) is defined in equations (36)-(37). Using Theorem 2 and equations (33)

and (35), we see that

s=l k=0

14



(53) <£ £
-_=,k=o M_ \_) "

We now assume that the jumps in f(k) satisfy a bound of the form

where A and _ are positive constants, independent of k and s. (Here we may assume,

without loss of generality, that _rr > 1.) Since the jumps in g(k) are arbitrarily close to

the corresponding jumps in f(H, we assume that equation (54) also holds for the jumps

in g(k) and then use this bound in equation (53) to write

We now combine the bounds (52) and (55) to write

max if(x) - S("<'_<_(x)< max
--Tr<x <:rr _ --Tr<x<_"

M

If(x) - g(x)l + max Is(x) - s(M'_'M)(z)I-_<z<_

(56) +nAKO ((7c_) re+z- 1"_ (0o _&7m+,
- M It roe- 1 ,,# t,,-e--A] "

We now set m = M in equation (56) and note that the second term in equation (56)

is dominated, for large values of M, by a constant times _M where _ = rr{00/eX

Since we want the magnitude of this quantity to be less than 1, we must require that

> v/e 2 + 47r2{2/2e. Then, with this stipulation, we find from equation (56) that

/(2 M

(57) -,_<x<_maxf(x) - s(M'_M)(x) _< K,_ M + --_¢ , as M --+ co,

where K1 and K2 are constants, independent of M, while 0 < r] < 1 and 0 < _ =

rr_00/eA < 1. Thus, we have proved the following theorem.

THEOREM 3. Let f be a 2rr-periodic, "piece-wise analytic" function, as defined

above. Then, for A > x/e 2 + 47r2{2/2e, the sequence of approximations f(M,XM) defined

in section _ converse exponentially to f, i.e.,

[(2 _M
max f(x)- f(M')'M)(x) < Klr] M+ M _ ' where ¢ = rr_Oo/eA < 1.--rr<x<:Tr

Here K_ and K_. are constants, independent of M, 77 is related to the lengths of the

intervals [x,-1, x_] and the singularities of fi (see equation (51)), _ is related to the

jumps in the derivatives of f (see equation (5_)), and 00 = 1/(2all - 1/(4A_)).

Before we illustrate the results of this theorem, we make two observations. First, if

the jumps [f(H(x,)] satisfy a bound of the form of (54) and{rr < 1, then it follows that

THEOREM 3 holds with C = 00/cA. (This conclusion follows from the estimates derived
15



above and the fact that (7/'_) M+I --_ 0, as M _ 0(3.) Secondly, we observe that if the

jumps in f(k) satisfy a bound of the form l [f(k)(xs)] _< A_ k, i.e., of the form of equation

(54), but without the factor k! present, then, again, THEOREM 3 holds with _ = 0o/eA.

(This follows from the fact that, for this case, the "k-summation" in equation (53) is

bounded by a constant times exp(Tr_), as m = M --* o0.)

We now summarize these observations in the following corollary.

COROLLARY 4. If the jumps [f(k)(xs)] satisfy a bound of the form of (54) and

_Tr < 1, or if they satisfy a bound of the form I[f(k)(xs)] < A_ k, s = 1,2, ...n, where

A and _ are positive constants, independent of k and s, then the results of THEOREM

3 hold with _ = Oo/e)_. In either of these cases, _ will be strictly less than one if

> (1/2e) + e2_-0.533.

6. More examples. In this section we consider three examples which serve to

illustrate some of the convergence properties discussed in the previous section.

Example 3: Let w be a non-integer constant and define f(z) = cos(w(x - _r)),

for -7r < x _ _r, and f(x + 2;r) = f(x) for all x. We note that, since the cosine function

is analytic in the entire finite part of the complex plane, the only singularities in f arise

from the fact that cos (w(x - rr)) is not 2re-periodic. In this case, we set n = 1, with

Xo = -7r and xl = rr. Then the quantity _7in equation (52) can be made arbitrarily small

and, hence, the convergence of our approximations is dominated by the second term on

the right side of equation (57). Also, for k = 0, 1, 2, ..., f(k) has only one singularity in

the interval (-Tr, 7r] and this singularity lies at x = ;r, with the corresponding jumps

given by

f (-1):+k/2w k (1 - cos(2wTr)), if k is even,
(58)

(-1)(k-1)/2w k sin(2w;r), if k is odd.

Thus, the jl_rnps in f(k) satisfy a bound of the form specified in equation (54) with

= w, but without the factor of k!. Thus, if follows from COROLLARY 4 that our

approximations converge exponentially to f at a rate which is bounded by ( = 00/eA.

The Fourier coefficients of f are given by

(-1)J+lw sin(2wrr) (-1)J+lj(1 - cos(2w;r))

(59) aj = 7c(j 2 _ w2 ) , bj = r:(j 2 _ w2 )

_(M) and b_M) are defined bywhile the coefficients aj

a_°) = aj, uj = % = ;rLJ" -w2) i=0 \ 4J 2 - (2i + 1) 2 ]'

(60) b_2k) = h(2k+,)_ (-1)5+1j(1- cos(2wzr))l_i//4w2- (2i + 1)2'_
-' -- 7r(J 2-w2) _=0\_ (2i+1) 2]'
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for k -- 0, 1,2, .... Following the sameargumentsgiven in section 5, we find for this
example,

1
E(M')'M)(x) --<M _e = M 2ev/A2- 1/4

Figure 9 we have plotted the normalized errors M (2ev/A2 - 1/4)ME(M'_'M)(x)" forIn

k = 1 and several values of M, for the representative case when co = 7/5. In Figure 10

we have plotted the normalized L_c-errors M (2e_/,_ 2- 1/4)Mmax E(M')'M)(x)[ as a

function of M for several values of ,k, also for co = 7/5. We shall discuss these results in

section 7.

Example 4: We let e be a positive constant and define f(x) = 1/(x 2 + c2), for

-_r < x < _', and f(x + 2r) = f(z), for all x. For this example, f has singularities in

the complex plane at z = =t=ie, which lie "close to" the interval [-rr, 7r], if e is small.

Following the remarks before Theorem 3, for this example we set n -- 2 and define

x0 = -% xl = 0, and x2 = 7r. Then we can select _1 = -rr and c_2 = _r and find

7r

(61) - +

In addition, each f(k) (x) has a singularity in the interval (-% _-], which lies at x = x2 =

7r, with the corresponding jumps given by

2k] (k-1)/2 ( k +1
= (-lY\2 j + 1/ k-2j =j

j=0

2k[

(62) = e(V/-__t_e2)k+lsin((k -t- 1)tan-l(e/Tr)), k odd,

and [f(k)(Tr)] = 0, if k is even. Using the fact that [sin(z)[ _< 1 for all real values of z,

it follows from equation (66) that

(63) [f(k)(lr)] _< k!,

for all values of k. Thus, the jumps in f(k) satisfy a bound of the form specified in

equation (54), with A = 2/(ex/_ + e2) and _ = (Tr2 + e2) -1/2. Since 7r_ < 1 for any

real value of e, it follows from COROLLARY 4 that our approximations again converge

exponentially to f at a rate bounded by the right side of equation (57), with 7?given by

equation (61) and _ = 00/eX Thus, for "small" values of e, the rate of convergence is

dominated by the value of r], while for "large" values of e it is dominated by the value

of _.

To illustrate the rate of convergence of our approximations for this example, in

Figure 11 we have plotted the quantities

(64) _M- [(max E(M'XM)(x))/ (max E(M-%:'(M-2))(X))]1/_-
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as a function of 1/M for A = 1 and variousvaluesof ebetween0.1 and 2. As M _ c_,

CM approaches the asymptotic rate of convergence of our approximations. For the

"small" value of e = 0.1, the asymptotic rate of convergence 77 = 7r/x/_+ d -" 0.999

is indicated by the short dotted line near CM = i, while for the "large" value of e = 2,

the asymptotic rate _ = 00/cA - 0.212 is also indicated by a short dotted line. We note

that, in both of these "extreme" cases, the figure seems to indicate that the estimate of

the rate of convergence predicted by the theory is overly conservative, with the actual

rate of convergence being smaller (better) in each case than the theory predicts. We

shall discuss this example further in the next section.

Example 5: Finally, let e be a real, positive number and define the function

f(x) = ((re + c) 2 - x2) -1 , for -Tr <_ x _< 77, and f(x + 277) = f(x), for all x. For this

example, f has singularities at x = +(_r + e), which lie "close to" the interval [-77, 7r],

if e is small. For this example, we set n = 1 and define x0 -- -_r and xl -- % and also

set al -- 0. Then

77

(65) -
77+e

In addition, each f(k)(x) has a singularity in the interval (-_v, 77], which lies at x = xl =

7r, with the corresponding jumps given by

If(k)(77)] = _
2k_

+

(66) k' { 1 1}-- _+e ek+I (277+e) k+l ' kodd,

and [f(k)(Tr)] = O, if k is even. Using equation (66), we find

,
£71"

and, hence, the bound (54) holds with _ = e-1. Thus, for this example, since _Tr > 1

when e < % THEOREM 3 guarantees exponential convergence only for A > x/e 2 + 4772_2/2e -+

Tr/ee --" 1.1557/e, as e ---+ 0. Alternatively, for a fixed value of A, the requirement that

C < 1 will be satisfied only if c > e0 --- 77/(ey/A2 - 1/4), with e0 - 1.335 when A = 1.

To illustrate the rate of convergence of our approximations for this example, in

Figure !2 we have plotted the quantities ¢M defined by equation (64) as a function

of 1/M for A = 1 and e -- 0.25, 0.375, 0.5, and 1. As M _ oe, _M approaches the

asymptotic rate of convergence of our approximations. It is obvious from the plot that

the lower bound on e obtained above (e0 -= 1.335) is too conservative, with the actual

value of eo being closer to 0.4 (for A = 1). We shall discuss these results further in the

next section.

7. Discussion and Conclusions. We now make some observations concerning

the convergence properties of the approximations we have constructed, particularly in

light of the examples we have considered.
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For the function of Example1, eachFourier coefficientis just a monomial in (l/j),
i.e., b_ --= -2/j. In fact, this function is just a constant multiple of the function h0,

which was the basic "building block" for the convergence proofs of section 5. In this

case, explicit expressions for the Fourier coemcients b_M) (equation (30)) were obtained,

where their O(1/j M+2) behavior is evident. Since f(k)(x) - O, for k > 2, the "need" to

include the basis functions Sk with k > 2 in the expressions for Rk is due solely to the

jump in the k th derivative of Sl, for l < k (see, e.g., equation (23)). This observation

suggests that it might be worthwhile to try to construct a new set of basis functions, say,

{Sk}, which have the property that Sk has a jump in only its k th derivative at x = 0.

Such functions can be constructed in a straightforward manner, by expressing Sk as an

infinite linear combination of the Sl, with l > k. However, this series representation of

Sk fails to converge for all x in the range -Tr _< x _< Tr, and hence is not useful. Even if

these expressions for Sk did converge over the entire interval, it is not clear that they

would have any practical advantage over the functions {Sk} which we have introduced.

The function of Example 2 is a piece-wise polynomial function, as defined in LEMMA

1, with m = 2, and has n = 4 points of singularity in the interval -_r < x < _r.

Consequently, each of its Fourier coefficients is a polynomial in (l/j). Even though

this function has multiple singularities, the approximations we constructed are able to

handle them in a straightforward manner.

Each Fourier coefficient of the function of Example 3 can be expressed as an infinite

series in powers of (l/j). However, the construction of our sequence of exponentially

convergent approximations follows exactly the procedure as in the polynomial case. In

fact, the only technical difference is the inclusion of the jump in f(_) in the definition

of the constants Ak,j (see equation (21)). For this example, the function f is an entire

function, with no singularities in the finite part of the complex x-plane. In particular,

it is analytic on [-Tr, Tr], but is not 27r-periodic. Consequently, the only "singularities"

in the 27r-periodic extension of f occur at x = 7r. Because of these properties, the

rate of convergence of our approximations for this example is the same as the rate of

convergence for the function h0, i.e., _"= 00/eA.

Each Fourier coefficient of the function f of Example 4 is again an infinite series in

(l/j), although these coefficients must now be computed numerically. As in Example

3, f is analytic at each value of x in the interval [-0r,_r], but it is not 2_T--periodic.

However, for this case, f has (purely imaginary) singularities in the finite part of the

complex plane at x = :t:ic. As a consequence, the rate of convergence of the approxima-

tions depends upon the value of c, with the rate of convergence approaching 1 as c ---* 0.

However, as c _ oz, the rate of convergence is again the same as that for the function

h0. Also, for any real, positive value of e, the approximations converge exponentially for

any value of A > A0 = (1/2e)v_ + e2.

The function of Example 5 is also analytic on [-% _r], but, again, is not 27r-periodic.

In this case, however, f has realsingularities at z = 4-(7r+c), and the rate of convergence

of our approximations again depends upon e. In this case, however, for sufficiently small

values of c the value of A must be greater than a specific lower bound, which depends

upon c and which increases as e --+ 0, in order to ensure exponential convergence.
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In comparingthe resultsof Examples4 and5, wenote that, in both cases,thereare
singularities of f which lie a distance e from the interval [-_r, 7r]. In Example 5, when

c is "small", these singularities tie close to the points where the 2_-periodic extension

of f has real singularities, namely, at x = ±_. In this case, the presence of these "near-

by" singularities seems to adversely affect the convergence of our approximations, in

the sense that we are forced to require that A increase as e decreases. By contrast, in

Example 4 the singularities lie "far" from the points where the 2_r-periodic extension

of f has real singularities, even when c is small. In this case, although the rate of

convergence is affected by the value of c through the parameter 77, it is not necessary to

require that )_ increase as e becomes smaller. Thus, the "nearness" of the singularities

of f to the points {xj } seems to be of more significance than simply the nearness of the

singularities to the interval [-_', It].

In the formulas above, we have consistently used (because of its simplicity) the

simple (loose) bound 00 in our estimates of the rates of convergence of our approxi-

mations. These estimates could be improved somewhat by using instead the sharper

estimate derived in the Appendix. For example, the plots in Figure 8 of the L_-errors

for Example 1, which were normalized using 00, clearly show, by the downward trends

as M _ ec, that the actual rate of convergence is smaller than the rate 00/Ae which

was used in the normalization. In Figure 13, we have plotted the maximum (L_)

errors maX lE(M')'M)(x)[ for Example i, normalized by M(Ae/DoOo) M, which involves

the sharper error bound derived in the Appendix, where Do is defined by equation

(73). Each of these plots are clearly bounded as M becomes large, and appear to be

approximately linear as M _ oc, with a slope that approaches zero as A becomes

large. These observations are consistent with an asymptotic rate of convergence given

by DoOo/)_e < 00/Ae.

As mentioned in the introduction, Gottlieb and several of his co-investigators

[3],[4],[5],[6],[7] have proposed and analyzed a technique using the Gegenbauer polyno-

mials which also leads to a series which converges exponentially to f in the maximum

norm (and, hence, also eliminates the Gibbs phenomena). Their technique requires a

knowledge of only the first 2N + 1 Fourier coefficients of f, whereas our method requires

a knowledge of the location and magnitude of the jumps of f and its first N derivatives

within the interval I-r, _]. Consequently, since our technique requires more "informa-

tion" about the function than Gottlieb's method, it is not surprising that our approxima-

tions converge much more rapidly than his do. In particular, the error in his approxima-

tions contains a term proportional to N2(qT) N, where qT = (/3+ < 1,
and a and/3 can be chosen so that the convergence rate is optimized. The correspond-

ing term in our approximations (see THEOREM 2) is N-l(Oo/e) N, where we have set

,_ = 1 and, hence, M = N. For the function f of our Example 1 (which is also the

first example in [3]), these terms are (approximately) N2(0.4763) N and N-1(0.2124) N,

respectively. In Figure 14 we have plotted log10 [max E(N'N)(x)] as a function of N

for Example 1 and Example 3 using our approximations and Gottlieb's approximations.

The difference in the rates of convergence is apparent from the figure

\Ve should also point out that in [3] the assumption was made that p > 1, where
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p is the distance of the nearest singularity of f from the basic interval [-1, 1]. (The

corresponding assumption for our analysis would be that p > _r.) This condition is

relaxed somewhat in [5]. However, we impose no such restriction on our functions f.

Several other methods have been proposed to accelerate the convergence of Fourier

series and/or to eliminate (or at least mitigate) the Gibbs' phenomena. These methods

include the construction of Fourier-Pad_ approximations [2] (mentioned in the intro-

duction), Fej_r's method [1], based on Ceskro sums, and Lanczos' "sigma" method [11].

In Figure 15, we have compared these three approximations for the function f(x) = x

of Example 1, along with the original Fourier series partial sum F (4) (equation (4)),

Gottlieb's approximation [3], and our approximation f(1,4) (equation (14)). It is inter-

esting to note that, although the approximations of Fej6r and Lanczos have essentially

eliminated the Gibbs phenomena, these approximations are of poor quality in an L2

sense. The simple reason for this is that each of these methods retains the same form of

the approximation and just replaces the original Fourier coefficients with certain other,

modified coefficients. It is well known (see [1], for example) that, for any linear combi-

nation of a finite number of sine and cosine functions, the original Fourier coefficients

are optimal in an L2 sense. Thus, the approximations of Fej6r and Lanczos can be no

better in the L2 sense than the original Fourier series partial sum.

Currently, we are investigating several topics related to the approximations we have

proposed, and they will be discussed in future papers. These topics include the problem

of determining estimates of the locations and the magnitude of the jumps in f and its

derivatives in the interval [-Tr, lr] directly from the Fourier coefficients of f. Such esti-

mates will allow the basis functions defined here to be used in a manner similar to that

described above, when only a finite number of the Fourier coefficients of f are known.

Some preliminary investigations have indicated that the new approximations will still

retain the property of exponential convergence, although the rate of convergence of the

new approximations will undoubtedly not be as rapid as the approximations described

here. Applications of these ideas directly to the solution of differential equations (par-

ticularly, boundary value problems) are also being investigated, as well as an extension

of the ideas presented here to other orthogonal basis (eigenfunction) expansions.
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Appendix: Derivation of 00

In this appendix, we first present a brief derivation of the bound

(68) 5" - 2_,_-_o _ ij < key, Oo(A)=_2_/1- 1/(4A_)'

where M = 2m + 1 and j > AM + 1, which was used in connection with the discussion

of the function of Example 1, as well as the function h0 which was used in the proof of

Theorems 2-3. To show that equation (68) holds, we first observe that

2i + 1 2m + 1 1

22 - 2(AM+ a) 2A'

for 0 < i < m and j > AM + 1. Using this result, we can write

fi 1-- -2-j -> fi (1 4_2)= 4-_] = (¢1-1/(4A2))
i=o i=o

Using this bound in equation (68) we find, for all A > A > 1/2,

(69) (_M < /_0oM, /__ (V/1_ I/(4_?))-'.

In the special case when AM is an integer, we can obtain a sharper bound for gM.

(Recall that M is an odd integer.) To do this, we first define J = 2(AM + 1) and then

note that

(70)

-]

fi l-\ 2j ]]i=0

<

i=0

H 1- 2i+1 2 -i
i=O J

-1

= jM+I (J - M - 2)!!
(J + M)!!
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(Here we have used that usual notation k!! --- 1 • 3.5 .-- k, for any odd integer k.)

Then, using Stirling's approximation to the factorial, we find that k!! --+ x/_(k/e) k/2,

as k --_ (x_. Using this approximation in equation (70), we find that

(71) 0 m <_ K. (DoOo) M, for A >_ i > 1/2,

where

(2,_ + _) _' el/_,. 1 3(72) /( =/((.X) = _-_ 41 - 1/(4A 2) < ¢1- 1/(4i2) '

and

(73) Do = Do(A) --=e ----*1+1
as A ---, oo.

We remark that, although our derivation is valid only for the case when AM is

an integer, the final result (equations (71)-(73)) holds for any positive value of A. The

reason for this is that the expression for k[! can be written as (k!)/(2(k-1)/2((k- 1)/2)!),

and this expression can be defined for noninteger values of k in terms of the Gamma

function. Since the estimate we used for k!! (following equation (70)) also holds for

noninteger values of k, it follows that the expressions (71)-(73) hold for noninteger

values of .kM as well.
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1) The fimctions So(X) and SI(x), as defined in equation (1). Note that So has a

jump of magnitude 1 at x = 0, while S[ has a jump of magnitude 1 at z = 0.
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2) The function f (solid line), the function R_ (dashed line), and the difference
fl = f - R1 (dotted line), for Example 1.
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3) The function f (solid line), the function fO,3) (the barely visible dashed line),

and the magnified error 50(f - fO,3)) (dotted line), for Example 1.
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4) The function f for Example 2 (solid lines), along with the Fourier series partial

sum F (_) of f (see equation (4)) with N = 10 (dashed line), and the error f - F (1°)

(dotted line).
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5) The function f (solid line), the function R1 (dashed line), and the difference

]'1 = f - R_ (dotted line), for Example 2.
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6) The function f (solid line), the function f(1,a) (the barely visible dashed line),

and the magnified error 50(f - f(1,a)) (dotted line), for Example 2
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7) The normalized errors M(/ke/Oo)ME(M,)'M)(x) for Example 1, when )_ = 1 and

M = 5 (solid line), M = 9 (dashed line), and M = 13 (dotted line). Note the more

or less "uniform" distribution of the error over the interval [-_r, 7rJ (especially as M

increases), as opposed to the error in the original Fourier series partial sums, which is

highly concentrated near x = 0.
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8) The normalized maximum (Lo_) errors M(Ae/Oo) M max E (M,)'M) (x) for Example

1 plotted as a function of l/M, for A = 1, 2, 3, 4, and 5.
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9) The normalized errors M(Xe/Oo)ME,(M')'M)(z) for Example 3, when A : 1 and

M = 5 (solid line), M = 9 (dashed line), and M = 13 (dotted line). Note the more

or less "uniform" distribution of the error over the interval [-lr, rr] (especially as M

increases), as opposed to the error in the original Fourier series partial sums, which is

highly concentrated near z = 7r.
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10) The normalized maximum (Lo_) errors M(Ae/Oo) u max E(M':_M)(x) for Exam-

ple 3 plotted as a function of I/M, for A = 1, 2, 3, 4, and 5.
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11) The quantities CM -- [(max E(M'AM)(x))/ (max IE(M-2'X(M-2))(X))]1/2 for

Example 4 plotted as a function of 1/M for A = 1 and for e = 0.1, 0.25, 0.375, 0.5, 1, and

2. As M --_ 0% (M approaches the asymptotic rate of convergence of our approximations.

The theoretical asymptotic rates of convergence 77= _/x/-_ e2 - 0.999 (for e = 0.1)

and _ = 00/cA --" 0.212 are each indicated by a short dotted line.
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12) The quantities CM -- [(max IE(M'_M)(x))/ (max E(_-2'_(_-2))(x))]1/2 for

Example 5 plotted as a function of I/M for A = I and for e = 0.25, 0.375, 0.5, and i.

As A//--+ oo, CM approaches the asymptotic rate of convergence of our approximations.

The criticalvalue _M ----1 isindicated by the short dotted line.
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13) The maximum (Lot) errorsM(Ae/DoOo) M max E(M'_M)(x)I forExample 1, nor-

realizedby the sharper error bound derived in the Appendix, plotted as a function of

1/M, for ,k = 1, 2,:3, 4, and 5 ....

36



° I I I ! I I I l i J i

0

0

-i0

0

"_>

I I I I I I I I I

N 55

14) A plot of the log10 {max IErrorl} for the functions of Example 1 (dotted lines)

and Example 3 (solid lines) using Gottlieb's approximation [3] (diamonds) and the

approximations f(N,N) equation (22) (circles), plotted as a function of N.
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15) A comparison of the function f(x) = x of Example 1 (denoted by circles)

and the original Fourier series partial sum F (4) (equation (4)), the Fourier-Pad4 ap-

proximation F3,1 [2], Fej4r's approximation [1]_ Lanczos' "sigma" approximation [11],

Gottlieb's approximation [3], and the approximation f(1,4) (equation (14)). All of these

approximations are based on only the first 4 terms in the original Fourier partial sum.
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